Inte		g Background Concentra	tions
Darian /Coasifia		cubic meter (µg/m³)¹	C
Region/Specific County ²	Screening	Region/Specific	Screening
County ²	Background	County	Background
1	50	5	50
Hutchinson	Cannot be used	Titus	Cannot be used
Potter	Cannot be used	Rusk	Cannot be used
Gray	Cannot be used	Harrison	Cannot be used
Moore	150	Smith	150
Carson	Cannot be used	Cass	150
Parmer	Cannot be used	Gregg	Cannot be used
2	50	Henderson	Cannot be used
Lamb	Cannot be used	Bowie	150
Hockley	80	Anderson	Cannot be used
Bailey	Cannot be used	Morris	Cannot be used
3	50	Panola	Cannot be used
Wilbarger	150	Camp	Cannot be used
Wichita	80	Franklin	Cannot be used
Nolan	80	6	50
4	50	El Paso	80
Dallas	Cannot be used	7	50
Tarrant	Cannot be used	Howard	150
Ellis	Cannot be used	Ector	80
Collin	80	Midland	80
Navarro	Cannot be used	8	50
Denton	80	Crockett	80
Kaufman	50	Coke	80

 $^{^1}$ The NAAQS is 196 $\mu g/m^3$ converted from parts per billion based on standard temperature and pressure 2 Use the value for the region the project will be located in, or county if listed

Inte		g Background Concentra	tions
D -: /C -:C		cubic meter (µg/m³)	C
Region/Specific	Screening	Region/Specific	Screening
County	Background	County	Background
9	50	12	50
Freestone	Cannot be used	Fort Bend	Cannot be used
Milam	Cannot be used	Harris	Cannot be used
Limestone	Cannot be used	Galveston	150
Grimes	Cannot be used	Brazoria	150
Robertson	150	Matagorda	150
McLennan	80	Colorado	Cannot be used
Brazos	Cannot be used	13	50
Bosque	80	Bexar	150
Leon	Cannot be used	Atascosa	Cannot be used
Falls	150	Comal	80
10	50	Wilson	150
Jefferson	Cannot be used	14	50
Orange	Cannot be used	Goliad	Cannot be used
11	50	Nueces	Cannot be used
Fayette	Cannot be used	Calhoun	150
Travis	80	Aransas	150
Hays	80	Bee	150
Williamson	80	Victoria	Cannot be used
Caldwell	80	Lavaca	80
Bastrop	80	Live Oak	80
Lee	Cannot be used	15	50
		16	50
		McMullen	Cannot be used

These values are conservative and based on available ambient monitoring design values (2007-2009), emissions inventory data, and permit allowable rates. However, the screening values cannot be used if more recent data indicates a higher value than in the tables. The values may change as more research is conducted and/or data obtained. It is the applicant's responsibility to determine the appropriate air quality concentrations to use for the source impact and air quality demonstration.

If a value is overly conservative, contact the Air Dispersion Modeling Team to determine if a more refined background concentration is available. For counties where the screening background values cannot be used, if the project's impact is greater than EPA's interim significance value, 7.8 $\mu g/m^3$, then a more refined analysis is required.