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1.0 Introduction: 
 
In order to understand the nature of air quality, the EPA statistically estimates the distribution of 
pollutants contributing to ambient air quality and the variation in that air quality. The statistical 
methods and analysis detailed in this report focus on using the conceptual framework of 
statistical significance to calculate levels of change in air quality concentrations that have a 
“significant impact” or an “insignificant impact” on air quality degradation. Statistical 
significance is a well-established concept with a basis in commonly accepted scientific and 
mathematical theory. This analysis examines statistical significance for a range of values 
measured by air quality monitors. The statistical methods and data reflected in this analysis may 
be applicable for multiple regulatory applications where EPA and state agencies seek to quantify 
a level of impact on air quality that they consider to be either “significant” or “not significant.” 
Note: We have adopted the following convention throughout the document: a “significant 
impact” (in quotes) refers to a level of air quality change that can be used in the permit analysis 
of the ambient impacts from a facility to determine if it “causes, or contributes to” a violation of 
the applicable National Ambient Air Quality Standards (NAAQS) or Prevention of Significant 
Deterioration (PSD) increment, whereas we use significant (italicized) to refer to a mathematical 
assessment of probabilistic properties.  

While this technical analysis may have utility in several contexts, the primary purpose of this 
document is to quantify the degree of air quality impacts corresponding to different confidence 
intervals (related to the statistical analysis presented here) that can be used in determining what 
is an “insignificant impact” when considering an application for a permit under the PSD 
program. In order to obtain a preconstruction permit under the PSD program, an applicant must 
demonstrate that the increased emissions from its proposed modification or construction will not 
“cause or contribute to” a violation of any NAAQS or PSD increment.1 One way that this 
criterion can be met is by showing that the increased emissions from a proposed source will not 
have a significant impact on ambient air quality at any location, including locations where an 
exceedance of the NAAQS or PSD increment is occurring or may be projected to occur.2 For the 
purposes of a PSD permit, the EPA has promulgated analytical methods involving air quality 
modeling and monitoring for conducting these compliance demonstrations.3 More generally 
(e.g., for purposes of designating areas as attainment or nonattainment), compliance with the 
NAAQS is determined by comparing the measured “design value”" (DV) at an air quality 
monitor to the level of the NAAQS for the relevant pollutant.4 A DV is a statistic or summary 
metric based on the most recent one or three years (depending on the specific standard) of 

                                                           
1 40 Code of Federal Regulations (CFR) 51.166 and 52.21. 
2 Memorandum from Peter Tsirigotis, EPA Office of Air Quality Planning and Standards, Guidance on Significant 
Impact Levels for Ozone and Fine Particles in the Prevention of Significant Deterioration Permitting Program,   
April 17, 2018. 
3 40 CFR, part 51, Appendix W, 82 FR 5182 (January 17, 2017), Revisions to the Guideline on Air Quality Models: 
Enhancements to the AERMOD Dispersion Modeling System and Incorporation of Approaches to Address Ozone 
and Fine Particulate Matter.  
4 A design value is a statistic that describes the air quality status of a given location relative to the level of the 
NAAQS. More information may be found at: http://www3.epa.gov/airtrends/values.html.  
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monitored data that describes the air quality status of a given location relative to the level of the 
NAAQS.  

The EPA has decided that an “insignificant impact” level of change in ambient air quality can be 
characterized by the observed variability of ambient air quality levels. Since the cause or 
contribute test is applied to the NAAQS in the PSD program, this analysis has been designed to 
take into account the ambient data used to determine DVs and the form of the relevant NAAQS. 
The EPA’s technical approach, referred to as the “Air Quality Variability” approach, relies upon 
the fact that there is inherent variability in the observed ambient data, which is in part due to the 
intrinsic variability of the emissions and meteorology controlling transport and formation of 
pollutants, and uses statistical theory and methods to model that intrinsic variability in order to 
facilitate identification of a level of change in DVs that is acceptably similar to the original DV, 
thereby representing a change in air quality that is not significant.5 The DVs and background 
ambient concentrations that are used in the PSD compliance demonstrations are obtained through 
the U.S. ambient monitoring network with measured data being archived for analysis in the 
EPA's Air Quality System (AQS).6 

Based on these observed ambient data, the EPA has estimated the variability of the air quality 
levels of ozone and PM2.5 through applying a well-established statistical approach known as 
bootstrapping. Bootstrapping is a method that allows one to construct measures to quantify the 
uncertainty of sample statistics (e.g., mean, percentiles) for a population of data.7,8 The bootstrap 
approach applied here uses a non-parametric, random resampling with replacement on the 
sample dataset (in this case, the ambient air quality concentration data underlying the DVs), 
resulting in many resampled datasets. This approach allows measures of uncertainty for sample 
statistics when the underlying distribution of the sample statistic is unknown and/or the 
derivation of the corresponding estimates is computationally unfeasible or intractable.7 
Bootstrapping is also commonly utilized to overcome issues that can occur when quantifying 
uncertainty in samples with correlated measurements. Bootstrapping has been used across a 
variety of scientific disciplines and in a wide range of applications within the environmental 
sciences.9,10,11,12 For example, bootstrapping has been used to evaluate the economic value of 
                                                           
5 This approach is applied here strictly for the purpose of section 165(a)(3) and no other parts of the Clean Air Act. 
6 The AQS contains ambient air pollution data collected by EPA, state, local, and tribal air pollution control agencies 
from over thousands of monitors. These data are used to assess air quality, assist in attainment/nonattainment 
designations, evaluate State Implementation Plans for nonattainment areas, perform modeling for permit review 
analysis, and other air quality management functions. More information may be found at: http://www.epa.gov/aqs.  
7 Efron, B. (1979); Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7 (1): 1–26. 
doi:10.1214/aos/1176344552. 
8 Efron, B. (2003); Second Thoughts on the Bootstrap. Stat. Sci., 18, 135-140. 
9 Schuenemeyer, J., Drew, L. (2010); Statistics for Earth and Environmental Scientists, John Wiley & Sons, Inc. 
http://dx.doi.org/10.1002/9780470650707.ch3. 
10 Park, Lek, Baehr, Jørgensen, eds. (2015); Advanced Modelling Techniques Studying Global Changes in 
Environmental Sciences, 1st Edition, Elsevier. ISBN 9780444635365. 
11 Chandler, R., Scott, M. (2011); Statistical Methods for Trend Detection and Analysis in the Environmental 
Sciences, John Wiley & Sons, Inc. ISBN: 978-0-470-01543-8. 
12 Mudelsee, M. & Alkio, M. (2007); Quantifying effects in two-sample environmental experiments using bootstrap 
confidence intervals, Env. Mod. & Software, 22, 84-96. 
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clinical health analyses13 and environmental policies,14 in evaluations of environmental 
monitoring programs,15 and in determining uncertainty in emissions inventories.16 Additionally, 
the EPA has used bootstrapping techniques as a key component in evaluating air quality model 
performance for use in our nation’s air quality management system.17,18 

The bootstrap technique, as applied in this analysis, quantifies the degree of air quality variability 
at an ambient monitoring site and allows one to determine confidence intervals (CIs), i.e., 
statistical measures of the variability associated with the monitor-based DVs, to inform the 
degree of air quality change that can be considered an “insignificant impact” for PSD 
applications. This approach is fundamentally based on the idea that an anthropogenic 
perturbation of air quality that is within a specified range may be considered indistinguishable 
from the inherent variability in the measured atmospheric concentrations and is, from a statistical 
standpoint, not significant at the given confidence level. Specifically, the analysis uses 17 years 
(2000-2016) of nationwide ambient ozone and PM2.5 measurement data from the AQS database 
to generate a large number of resampled datasets for ozone and PM2.5 DVs at each monitor from 
which the appropriate design values are calculated. The DVs from the resampled datasets are 
used to determine CIs that provide a measure of the inherent variability in air quality at the 
monitor location. This variability may be driven by the frequency of various types of 
meteorological and/or emissions conditions impacting a particular location. The analysis 
estimates a range of CIs for each monitor. As discussed in Section 4.1.1 of this document and in 
the Policy Document,2 the 50% CI was chosen to quantify the bounds of a change in air quality 
that can be considered an “insignificant impact” for the purposes of meeting requirements under 
the PSD program. 

This technical basis document explains the analysis design and results provide the EPA’s rational 
basis to recommend Significant Impact Levels (SILs) values that can be applied as a tool for 
making the PSD compliance demonstration required by the Clean Air Act (CAA) and PSD 
regulations. The second section of this document provides an overview of EPA’s Air Quality 
Variability approach, including details on the ambient monitoring network, the ambient ozone 
and PM2.5 data from AQS that are used to derive monitor-specific DVs, a general review of 
statistical significance and confidence intervals, and a description of the bootstrap technique as 
applied to characterize air quality variability. The third section presents the measures of air 
quality variability determined from applying the bootstrap technique to the AQS data for ozone 
and PM2.5. The last section provides an analysis of confidence intervals for the ozone and PM2.5 
DVs and the implications of the geographical analysis performed in response to peer reviewer 
                                                           
13 Campbell, M., & Torgerson, D. (1999); Bootstrapping: Estimating Confidence Intervals for Cost-effectiveness 
Ratios, Q. J. of Med., 92, 177-182. 
14 Kochi, I., Hubbell, B., & Kramer, R. (2006); An Empirical Bayes Approach to Combining and Comparing 
Estimates of the Value of a Statistical Life for Environmental Policy Analysis, Env. & Resource Econ., 34, 385-406. 
15 Levine, C., et al (2014); Evaluating the efficiency of environmental monitoring programs, Ecol. Ind., 39, 94-101.  
16 Tong, L., et al (2012); Quantifying uncertainty of emission estimates in National Greenhouse Gas Inventories 
using bootstrap confidence intervals, Atm. Env., 56, 80-87.  
17 Hanna, S. (1989); Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife 
resampling methods, Atm. Env., 6, 1385-1398.  
18 Cox, W. & J. Tikvart (1980); A statistical procedure for determining the best performing air quality simulation 
model, Atm. Env., 9, 2387-2395. 
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comments. The resulting values chosen by the EPA can serve as SIL levels for the ozone 
NAAQS and the annual and 24-hour PM2.5 NAAQS. 

2.0  Background on Air Quality Variability Approach 
 
This section provides details on the ambient monitoring data for ozone and PM2.5 that were used 
in the EPA’s Air Quality Variability approach and the statistical methods that form the technical 
basis for the EPA’s Air Quality Variability approach. 

2.1 U.S. Ambient Monitoring Data 
 
The EPA’s understanding of the nation’s air quality is based on an extensive ambient monitoring 
network, which is used for multiple purposes, including to determine compliance with the 
various NAAQS. In addition, the monitoring network is used to inform the public about the 
status of air quality across the nation and to support air pollution research, particularly in the 
evaluation and development of updated NAAQS. The general requirements of the monitoring 
network are given in 40 CFR part 58, Appendix D (Network Design Criteria for Ambient Air 
Quality Monitoring). These general requirements and choices made by the state and local air 
agencies conducting monitoring have resulted in monitoring sites across the nation with a variety 
of characteristics in terms of location, monitoring equipment, and operating schedule. 

NAAQS compliance is determined by comparing the measured DV derived from a monitor’s 
data to the level of the NAAQS for the relevant pollutant. The DV is a particular statistic 
determined from the distribution of data from each monitor and is consistent with the averaging 
period and statistical form of the relevant NAAQS. The DVs from an area’s monitoring network 
are used to determine attainment status for that area. The DVs for PM2.5 and ozone are 
determined as follows: 

• For the primary ozone NAAQS, the DV is the 3-year average of the annual 4th-highest 
daily maximum 8-hr average (MDA8) ozone concentration.19 A monitor is in compliance 
if the DV is less than or equal to the level of the standard, which was recently revised to 
be 0.070 ppm (70 ppb.)20 

• For the primary annual PM2.5 NAAQS, the DV is the 3-year average of the PM2.5 annual 
mean mass concentrations.21 The annual mean is defined as the mean of the data in each 
of the 4 quarters of the year (i.e., the mean of the quarterly means). A monitor is in 
compliance with the 2012 annual primary PM2.5 standard if the DV is less than or equal 
to 12.0 μg/m3.22 

                                                           
19 Appendix U to Part 50 - Interpretation of the Primary and Secondary National Ambient Air Quality Standards for 
Ozone. 
20 National Ambient Air Quality Standards for Ozone, 80 FR 65292 – 65468 (Oct. 26, 2015). 
21 Appendix N to Part 50—Interpretation of the National Ambient Air Quality Standards for PM2.5. 
22 There is a secondary PM2.5 NAAQS, with a level of 15.0 μg/m3. The work here focuses only on the primary 
NAAQS at 12.0 μg/m3, since compliance with the primary standard explicitly implies compliance with the  
secondary standard as well. 
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• For the 24-hr PM2.5 NAAQS, the DV is the 3-year average of the annual 98th percentile 
24-hr average PM2.5 mass concentration. A monitor is in compliance with the 24-hr PM2.5 
standard if the DV is less than or equal to 35 μg/m3. 

2.1.1 Ozone Monitoring Network 
 
The ozone monitoring network consists of only one type of monitor, Federal Equivalent Method 
(FEM) monitors.23 The FEM for ozone uses ultraviolet (UV) light to determine ozone 
concentrations at high temporal resolutions, on the order of seconds to minutes, although only 
hourly averages are typically recorded. Unlike PM2.5 monitors, most ozone monitors are not 
required to operate year-round, and are instead required to operate only during the “ozone 
season.” The ozone season is the time of year that high ozone concentrations (which may 
potentially exceed the NAAQS) can be expected at a particular location. The ozone season varies 
widely by location, but is generally focused on the summer months, with a typical season 
spanning March through October. During the period of 2000 through 2016, a total of 1,708 
ozone monitors reported data, with the locations of the ozone monitors shown in Figure 1 along 
with the average number of days sampled each year that the monitor was active. 

 
Figure 1 - Location and average number of monitored ozone days each year from the ozone 
sampling network for the years 2000-2016. 
 

                                                           
23 FEM monitors are approved on an individual basis. The list of approved monitors and the accompanying CFR 
references can be found at http://www3.epa.gov/ttn/amtic/criteria.html. 
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2.1.2 PM2.5 Monitoring Network 
 
The PM2.5 monitoring network consists of two types of monitors: Federal Reference Method 
(FRM)24 and FEM23 monitors. FRM monitors use a filter-based system, passing a low volume of 
air through a filter over a period of 24 hours (midnight to midnight) to determine 24-hr average 
concentrations. All monitors operate year-round, but not all monitors operate every day 
throughout the year. Although some FRM sites operate every day (i.e., 1:1 monitors), most 
operate every third day (1:3 monitors), while a smaller number of monitors operate only every 
sixth day (1:6 monitors), according to a common schedule provided by the EPA. Newer FEM 
monitors are “continuous” monitors that can provide hourly (or shorter) PM2.5 measurements and 
have undergone testing to demonstrate conformance (including linear regression, slope/intercept, 
time series, and mean concentration ratios) with the FRM monitors.25 FEM monitors operate on 
a 1:1 schedule and daily averages from FEM monitors are determined by averaging the 24 hourly 
measurements collected throughout the day. FEM monitors are slowly replacing FRM monitors, 
so monitoring sites with a long data record may have data derived from either an FEM, FRM, or 
combination of both types of monitors. Although the FRM and FEM monitors have small 
differences in their performance, the largest impact to the bootstrap technique of this transition 
from all FRM monitors to a mix of FRM and FEM monitors is the gradual increase in the 
frequency of PM2.5 measurements over time. During the period of 2000 through 2016, a total of 
1,773 PM2.5 monitors reported data, with the locations of the PM2.5 monitors shown in Figure 2 
along with the average number of days sampled each year that the monitor was active. 

                                                           
24 Appendix B to Part 50—Reference Method for the Determination of Suspended Particulate Matter in the 
Atmosphere (High-Volume Method). 
25 Noble, C. A. et al (2001); Federal Reference and Equivalent Methods for Measuring Fine Particulate Matter, 
Aerosol Sci. & Tech, 34:5, 457-464. 
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Figure 2 - Location and average number of monitored PM days each year from the PM2.5 
sampling network for the years 2000-2016. 
 
2.1.3 Monitoring Network Design 
 
The ambient air monitoring network is designed to support several objectives. In consideration of 
the location and measurement taken, each monitor is assigned a spatial scale. Spatial scales are 
generally associated with the size of the area that a pollutant monitor represents. The monitor 
spatial scales are defined in 40 CFR part 58, Appendix D as: 

1. Microscale—Defines the concentrations in air volumes associated with area dimensions 
ranging from several meters up to about 100 meters. 

2. Middle scale—Defines the concentration typical of areas up to several city blocks in size 
with dimensions ranging from about 100 meters to 0.5 kilometer. 

3. Neighborhood scale—Defines concentrations within some extended area of the city that 
has relatively uniform land use with dimensions in the 0.5 to 4.0 kilometers range. The 
neighborhood and urban scales listed below have the potential to overlap in applications 
that concern secondarily formed or homogeneously distributed air pollutants. 

4. Urban scale—Defines concentrations within an area of city-like dimensions, on the order 
of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in 
there being no single site that can be said to represent air quality on an urban scale. 

5. Regional scale—Defines usually a rural area of reasonably homogeneous geography 
without large sources, and extends from tens to hundreds of kilometers. 
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6. National and global scales—These measurement scales represent concentrations 
characterizing the nation and the globe as a whole. 

Depending on the distribution and types of sources in an area and the need to determine 
particular aspects of the air quality, there may be multiple types of monitors placed in an area. 
For example, a large metropolitan area, due to its size, may require several “urban scale” or 
“neighborhood” scale monitors to capture the range of air quality in the area. Such an area might 
also have "microscale" monitors placed in order to assess the impacts from a single source or 
small group of sources as well as a “regional scale” monitor to establish the background air 
quality in an area in order to differentiate the impacts from the urban area. Conversely, for a 
smaller urban area a single “urban scale” monitor may be considered sufficient to fully 
characterize the local air quality. Thus, there are wide variety of monitors in any area, covering a 
range of air quality monitoring needs. For ozone, the appropriate spatial scales are neighborhood, 
urban, and regional scale. For PM2.5, in most cases the appropriate spatial scales are 
neighborhood, urban, or regional scales; however, in some cases it may be appropriate to 
monitor at smaller scales, depending on the monitoring objective.  

2.1.4 Air Quality System (AQS) Database 
 
The EPA’s AQS database contains ambient air pollution data collected by state, local, and tribal 
air pollution control agencies, as well as EPA and other federal agencies, from the monitoring 
stations described above (as well as monitoring stations for other NAAQS).6 AQS also contains 
meteorological data, descriptive information about each monitoring station, and data quality 
assurance/quality control information. The Office of Air Quality Planning and Standards 
(OAQPS), state and local air agencies, tribes, and other AQS users rely upon the system data to 
assess air quality, assist in attainment/nonattainment designations, evaluate state implementation 
plans for nonattainment areas, perform modeling for permit review analysis, and execute other 
air quality management functions related to the CAA. 

2.2 Statistical Methods and Assessing Significance Using Confidence Intervals 
 
This section provides a general overview of statistical methods, how air quality variability is 
characterized for this analysis, and the bootstrapping approach employed to estimate air quality 
variability. 

2.2.1 General Overview of Statistical Methods 
 
Statistics is the application of mathematical and scientific methods used to interpret, analyze and 
organize collections of data. Most statistical techniques are based on two concepts, a 
“population” and a “sample.” The population represents all possible measurements or instances 
of the entity being studied. The sample is a subset of the population that is able to be collected or 
measured. Since the sample is only a portion of the population, any observations or conclusions 
made about the population based on the sample will have uncertainty, i.e., there will be some 
error in those observations or conclusions due to the fact that only a subset of the population was 
sampled or measured. Consider the following example: 
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As discussed above, the ambient monitoring network is designed to capture a range of 
ambient impacts from facilities and to characterize both background and local air quality. 
Suppose we want to determine the average ground-level PM2.5 levels in a remote state 
wilderness area over the course of a year. Assuming the wilderness area does not have 
major PM2.5 sources and the area is remote (i.e., there are no major metropolitan areas 
upwind), a single, well-placed “regional scale” monitor may be sufficient to capture the 
nature of PM2.5 levels in the area (i.e., the PM2.5 levels within the wilderness area are 
homogenous). Due to the remote nature of the monitor, it is only operated on a 1-in-
every-6 days schedule, such that one 24-hr average PM2.5 measurement is made every six 
days. In this case, we may consider the population to be the 24-hr average PM2.5 
concentrations every day (365 potential samples over the whole year) within the 
wilderness area. The sample would be the 1-in-every-6 days 24-hr average PM2.5 
measurements (60 samples taken over the whole year). From this sample of the 
population, a mean 24-hr average PM2.5 concentration can be calculated, which can be 
characterized as representing the mean 24-hr average PM2.5 concentration from the 
population, with some amount of error between the sample mean and the population 
mean. By using information about the size and distribution of the sample, an estimate of 
the population variability (i.e., the spread of the distribution), can be determined (e.g., the 
standard deviation). 

Significance testing, or determining the statistical significance of a particular value as it relates 
to a sample, is a major application of statistics. In formal hypothesis testing, a statement of non-
effect or no difference – termed the null hypothesis – is established prior to taking a sample in 
order to test the effect of interest. A statistical test is then carried out to determine whether a 
significant effect (or difference) is present at the desired level of confidence. Note that not 
finding a statistically significant difference is not a claim of the null hypothesis being true or a 
claimed probability of the truth of the null hypothesis.26 Non-significance simply shows the data 
to be compatible with the null hypothesis under the set of assumptions associated with the 
statistical test.26 A CI can be used as a mathematically equivalent procedure26 to a formal 
hypothesis test for significance. CIs are constructed based on the desired confidence level and 
characteristics of the sample, including the sample variance, to determine error bars for the 
statistic of interest, such as the mean. Error bars constructed in this fashion are referred to as CI 
because they convey the confidence in the sample estimate of the population given the size of 
and the variability in the sample. This can then be used to determine if the mean is significantly 
different from a particular value of interest, such as zero or some other threshold for the 
pollutant, by examining whether the value of interest is within the CI or outside the bounds of the 
CI. 

The most well-known approach to deriving CIs uses the characteristics of sampling distributions 
and the Central Limit Theorem. The sampling distribution of the mean results from sampling all 
possible samples of a specified size n from the true population and considering the distribution of 
the resulting means from each sample. The Central Limit Theorem is based on the fact that the 

                                                           
26 Gelman, A. P values and Statistical Practice, Epidemiology, 2013, Vol 24, Num 1, pg 70. 
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sampling distribution of the sample mean will center around the population mean. Regardless of 
the distribution of the original population, the sampling distribution of the mean will be normally 
distributed.27 Additionally, the sampling distribution will have a spread, with a standard 
deviation that is inversely proportional to the square root of the sample size n (i.e., the larger the 
sample size, the tighter the spread of the sampling distribution of the mean around the true mean 
of the population). This allows for the derivation of a CI by calculating the estimated mean 
plus/minus the standard error, which is a function of the sample size, the standard deviation, and 
the desired level of confidence.  

To relate these statistical tests to a practical application, we continue the hypothetical example 
from above: 

Suppose that the observed annual mean PM2.5 concentration for a given year is 7 µg/m3, 
and that based on the Central Limit Theorem utilizing the properties of the sampling 
distribution, the 95% CI for the annual mean is determined to be 6.4-7.6 µg/m3 (7 µg/m3 
+/- 0.6 µg/m3, where 0.6 µg/m3 has been determined based on the standard error and the 
desired level of confidence). Since the CI contains the value 7.5 µg/m3, we may, 
therefore, conclude based on this specific sample that the mean of the population is not 
significantly different from 7.5ug/m3 at the 0.95 confidence level. Conversely, if the 95% 
CI for the annual mean PM2.5 concentration is 6.7-7.3 µg/m3 (7 µg/m3 +/- 0.3 µg/m3), 
then the CI does not contain 7.5 µg/m3 and it could be concluded that the mean of the 
population is significantly different from 7.5 µg/m3 at the 0.95 confidence level.  

The Central Limit Theorem also tells us that due to the Gaussian (Normal Distribution) 
properties of a sampling distribution, 68/95/99.7 percent of the values in the theoretical sampling 
distribution will be within 1/2/3 standard deviations of the true population mean respectively. 
Additionally, in any symmetric distribution such as the Gaussian obtained with the theoretical 
sampling distribution, the mean is equal to the median, where the median is the center value such 
that 50% of the values are below the median and 50% above. Thus, an alternative approach to 
deriving a CI directly utilizes these characteristics of the sampling distribution to consider the 
spread around the sampling distribution mean. For example, a 95% CI would be defined as the 
lowest value to the highest value of the 95% of the distribution that centers around the sampling 
distribution mean. This corresponds to the 0.025 and 0.975 quantiles of the sampling 
distribution. An example of this method of determining CIs is given in Figure 3, which shows a 
distribution of the mean determined from repeated samples from the population. Note that in 
practice the sampling distribution is approximately Normal. The average of the sample means is 
6.98 µg/m3. In order to determine the 95% CI, the data are first rank-ordered from smallest to the 
largest concentration value, then the bounds of the 0.025 and 0.975 quantiles are the bounds of 
the CI (the 50% CI is also shown as an example).  

                                                           
27 These are asymptotic properties given that the sample size n is large and that the number of samples (N) drawn 
from the population is large – in theory, all possible samples of size n are drawn from the population. (Moore and 
McCabe, 4th Ed, 2003 – p. 262.) In practice, n > 30 and N is often 1,000, 10,000, or as determined by convergence 
of distributional characteristics, and the resulting sampling distribution is approximately normal. 
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Figure 3- Example of CIs determined from a distribution of sample means.  
 

The techniques utilizing the sampling distribution to make inferences about the population mean 
can be applied to other statistics as well, such as sample quantiles. Additionally, a statistical 
technique applied as resampling from one particular drawn sample, known as bootstrapping, can 
be used to generate estimated CIs for any desired statistic. Bootstrapping is further explained in 
Section 2.2.3. 

The CIs for any sample comparison are generally affected by three main factors: the size of the 
sample, the variability within the sample, and the confidence limits desired for the comparison 
(e.g., 0.95 level of confidence was used in the example above). Increasing the sample size 
(taking more measurements or samples) will increase the representativeness of the sample of the 
population and decrease the variance associated with the calculated measurement, resulting in 
narrower CIs. Samples from populations with greater inherent variability will have greater 
uncertainty and result in larger CIs. Finally, increasing the confidence level of the inferred 
conclusion will necessitate larger CIs, while lower confidence thresholds will result in narrower 
CIs. There are clearly many complicated aspects of significance testing, many of which require 
subjective selections by the analyst to insure that the results are appropriate to the application 
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and to reduce the influence of uncontrolled variables on the results and conclusions. These 
selections are usually made based on convention and standard practice, such as choosing a 95% 
CI. While there are many more applications of statistical techniques and nuances of the 
principles described above, these basic concepts of the population, sample, CIs (and their 
relationship to probability) are the fundamental concepts used in the development of “significant 
impact” thresholds presented here. 

2.2.2 Characterizing Air Quality Variability 
 
As discussed in Section 2.1, the DV from a particular monitor is the air quality statistic that is 
used to describe the air quality in an area (e.g., the annual mean was the statistic from the 
example above) and is compared to the NAAQS to determine attainment status for that area. 
Within the conceptual framework discussed in the previous section, the ambient data from a 
single monitor are a sample of a population of the air quality in an area and the uncertainty in 
that sample stems from the inherent variability that occurs in air quality. The inherent variability 
is driven by a collection of factors, both natural (meteorological) and anthropogenic (emissions), 
which can be grouped into spatial and temporal categories. 

2.2.2.1 Spatial variability 
 
The spatial variability is the change in air quality that is present at any one moment across an 
area. This variability is driven by the spatial distribution of sources (causing localized increases 
in ambient concentrations due to their emissions), removal or sinks (causing localized decreases 
in ambient concentrations due to physical or chemical processes), variations in chemical 
production for secondarily formed PM2.5 and ozone (which do not have direct emissions 
sources), and meteorology (wind patterns may transport air from areas with higher emissions to 
areas that typically have lower concentrations due to fewer localized emissions). The spatial 
variability is directly addressed in the network design (i.e., the spatial scale associated with each 
monitor and the potential need for multiple monitors to characterize the air quality in an area). 
One way to estimate the spatial variability is to compare ambient monitors that are in close 
proximity to one another. Such monitors would likely show similar trends in the ambient 
concentrations, with some variation due to changes in emissions and meteorology responsible for 
transporting pollutants and affecting chemical conversion, creation, and removal of atmospheric 
species that are specific to each individual location. 

These spatial variations occur in the population of air quality levels and can be estimated from 
the existing sample (i.e., data available from the ambient monitoring network). Depending on the 
intended scale of the monitor, there is some room for interpretation as to the population that 
sample represents (e.g., a sample from an area-wide monitor theoretically represents the 
population of air quality across a wide area), and this interpretation has implications for the 
determination of the uncertainty associated with the sample (e.g., a sample from an area-wide 
monitor is less likely to accurately represent air quality across the whole area at any moment, 
thus having greater uncertainty as to its ability to characterize the population of air quality it is 
intended to represent). Given the nature of the variability in air quality, there are three potential 
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populations represented by the sample and the spatial variability between the sample and the 
population: 

1. If the population is considered to be the air quality at the location of the monitor only, 
then there is no spatial variability. 

2. If the population is considered to be the air quality in the immediate vicinity of the 
monitor, then there will be some spatial variability, the degree of which will depend on 
nearby sources and sinks and the distance of the location of interest from these sources 
and sinks. For PM2.5, if there is a nearby source of primary PM2.5, changes in wind 
direction and mixing conditions will change where these nearby sources have impacts, 
such that there would be more spatial variability on this small scale. If there is no nearby 
source of primary PM2.5, then secondary PM2.5 would dominate and there would likely be 
little small-scale spatial variability on this small scale. For ozone, the same is true, in that 
there will likely be little spatial variability unless there are nearby sources that act as a 
sink (i.e., major NOx source such as a highway or point source). Without a nearby sink, 
then the secondary nature of ozone would generally indicate that there is little spatial 
variability on this small scale. 

3. If the population is considered to be the air quality over a larger scale (e.g., a county or 
Core Based Statistical Area or CBSA), then there is much more spatial variability. As 
with case 2, the presence and location of sources and sinks will impact how much spatial 
variability is present, though on such a large scale, there are likely to be many sources 
and sinks across the area, resulting in more spatial variability. 

As discussed in Section 2.2.1, monitoring sites are assigned a spatial scale, which are associated 
with the size of the area for which a particular monitoring site should be representative of the air 
quality. For secondarily formed pollutants, Appendix D to Part 58 states that the highest 
concentration monitors may include urban or regional scale monitors (i.e., 50 to hundreds of km 
spatial scale). Intuitively, it would be expected that the air quality changes across these distance 
scales, such that the air quality across such a large area is not identical to the air quality as 
determined by a single monitor. Indeed, these classifications are supportive of the idea that there 
are spatial variations, such that multiple monitors are generally needed to adequately characterize 
the air quality in an urban area. However, in rural areas with few emissions sources, a single 
monitor may be sufficient to characterize the air quality over hundreds of square km (as was the 
case in the example above). 

2.2.2.2 Temporal variability  
 
In the example introduced in Section 2.2.1, there may be uncertainty not only from the limited 
sampling of the population, but also based on changes in the population occurring with time.  

Temporal variability is the variability in air quality that occurs over time, which is driven by 
changes in emissions and meteorology over a range of time scales. For shorter time scales, 
diurnal patterns in both emissions and meteorological processes can impact most atmospheric 
pollutants. Mobile source emissions, which can substantially contribute to atmospheric pollution, 
have particularly strong daily (i.e., rush-hour) and weekly (no rush-hour on the weekends) 
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patterns. Day-to-day meteorological variability (i.e., frontal passages and synoptic weather 
patterns) can also cause temporal variability on the timescale of days to weeks. At intermediate 
time scales, seasonal changes in weather can have a major impact in transport patterns and 
chemical reactions. There can be seasonal trends in emission patterns as well, particularly those 
associated with energy production and mobile source emissions. At longer time scales, there can 
be longer-term trends in meteorology (e.g., particularly warm or wet years) and emission sources 
(sources being added or removed or changes in emissions due to emissions controls or economic 
conditions) that result in long-term air quality variability. Temporal variability is reflected in the 
form of the standard (i.e., compliance with each ozone and PM2.5 standard is based on 3 years of 
data in order to reduce from the impact of temporal variability on NAAQS implementation 
programs). This variability can be addressed by requiring continuous monitoring in an area, even 
after air quality levels in an area are below the level of the standard. The long-term temporal 
variability can be characterized by examining changes in air quality over time at a particular 
monitor (e.g., trends in DVs or other metrics from the monitor). The shorter-term temporal 
variability can be described by examining the hourly and daily changes in air quality or by 
comparing data from periods with similar meteorological conditions (e.g., afternoon, weekdays 
versus weekends, or summertime concentrations).  

Whatever the spatial scale of the monitor, temporal variability will always contribute to the air 
quality variability, as there will always be day-to-day changes in meteorology and emissions and 
variability between seasons and years, which may or may not include any trends in emissions 
and meteorology. The form of the standard (e.g., annual average or a ranked daily value), the 
temporal resolution of the monitoring data (e.g., hourly or 24-hr averaged samples), and the 
frequency of the sampling (e.g., daily samples or samples taken every sixth day) may affect the 
ability of the monitoring data to fully capture the inherent temporal variability and thus increase 
the uncertainty in any statistic or DV derived from a particular sample. If a monitor has some 
missing data, then it is easy to conceptualize that there is some uncertainty caused by temporal 
variability in that there are days and hours that are not represented by the monitor. On the other 
hand, if a monitor has a perfect sampling record, then the uncertainty due to reduced sampling 
frequency is eliminated, but there remains long-term variability. Since the PM2.5 and ozone DVs 
are based on 3 years of data, there is variability between the years that affect the DVs. As noted 
above, the use of a 3-year DV, rather than a DV derived from 1 or 2 years of data, is intended to 
increase the stability (or reduce the variability) of the DVs.  

The importance of temporal variability is perhaps more apparent when the application of the 
DVs are considered. For area designations purposes, the DVs are historical (updated DVs for a 
particular year are published in the following calendar year), such that the DV is an estimate of 
the current state of the air quality in an area. Furthermore, in the permitting process, DVs are 
paired with modeling of past years of meteorology and planned future emissions. Thus, the 
changes from year-to-year and the uncertainty in estimating future air quality levels are 
illustrative of important factors affecting temporal variability that impacts regulatory applications 
and exists regardless of the completeness of the sampling record or the spatial scale defining the 
population discussed above.  
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Continuing the example from Section 2.2.1: 

Suppose that after 1 year of sampling, there is some commercial development adjacent to 
the wilderness area, such that new buildings and larger traffic volumes are present during 
the second year of the monitor’s operation. One might want to assess whether or not the 
new activity has had a notable impact on the average PM2.5 concentrations within the 
wilderness area. A comparison between the scenarios can be considered, and the idea that 
the difference between the two may be “notable” can be evaluated by comparing that 
difference to the estimated CIs created by the bootstrap procedure using the concepts in 
significance testing (Section 2.2.1). 

2.2.2.3 Assessing air quality variability 
 
Based on the description of the population determined above, the DV can be understood to be a 
statistic determined from a sample of the population. CI’s for a particular DV can then be used to 
compare the DV with another DV or a constant value (e.g., the NAAQS). If the CI for the DV 
contains the value of interest, then the DV and the value of interest are statistically 
indistinguishable from one another, given the sample data available at a particular confidence 
level. In the context of an air quality analysis, if a CI can be determined for a DV, then it can be 
concluded that a value within some given amount of variation of a DV (i.e., within a CI for that 
DV) is statistically not significant with respect to that selected level of confidence. Note that in 
this context non-significance simply shows the data to be compatible with an assumption of no 
difference between the value and the DV.26 

2.2.3 Bootstrapping Method 
 
For annual-average standards (i.e., averages of many samples during 1 or 3 years), there are 
standard parametric methods (e.g., the standard deviation) that might be used to estimate 
variability associated with DVs. When the statistic of interest has a variance that is difficult to 
estimate with parametric assumptions, such as a rank order statistic, some other approach must 
be taken to determine CIs. For non-normal populations, there are some adjustments that can be 
made to determine CIs of the mean if the data conform to some standard distribution (e.g., log-
normal). For small sample sizes, other non-parametric tests such as the Mann-Whitney28 test or 
the Wilcoxon signed-rank test29 may be used. However, for many statistics (e.g., the 98th 
percentile), the underlying distribution of the statistic may be complicated or unknown, and thus 
determination of the CIs for these statistics can be difficult or impossible to determine with 
traditional metrics.30 Of the three NAAQS considered here, the annual PM2.5 standard is the only 
NAAQS that is based on a sample mean. However, the calculation of the DV statistic for the 
annual PM2.5 NAAQS is more complicated than merely taking a simple arithmetic average of the 
24-hr PM2.5 values across 3 years; thus, deriving the distribution of the annual PM2.5 DV statistic 
                                                           
28 Mann, H. B.; Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically 
Larger than the Other. Annals of Mathematical Statistics 18 (1): 50–60. doi:10.1214/aoms/1177730491. 
29 Wilcoxon, F. (Dec 1945). Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80–83. 
30 Woodruff, R. S. (1952); Confidence intervals for medians and other position measure. J. Amer. Stat. Assoc., 47, 
635–646, doi:10.1080/01621459.1952.10483443. 



20 
 

is not straightforward. The CIs for the 24-hr PM2.5 and ozone NAAQS are based on rank-order 
statistics (98th percentile for PM2.5 and 4th highest daily maximum 8-hr ozone concentration, see 
Section 2.1), which cannot be easily described using standard statistical techniques. Thus, for the 
three DV statistics being analyzed here, an alternative technique to determine CIs is needed. 

The bootstrapping method mentioned above is a well-established and accepted statistical method 
that allows one to estimate the underlying distribution of many sample statistics (e.g., mean, 
percentiles, and correlation coefficients) when the theoretical distribution is complicated or 
unknown.7, 8, 9 The bootstrap method relies on the underpinnings and characteristics of sampling 
distributions discussed in Section 2.2. The estimate of the distribution is accomplished by 
resampling with replacement from the initial dataset many times, resulting in many resampled 
datasets (bootstrapped samples). The sample statistic of interest is then computed from each 
resampled dataset, resulting in an empirical estimate of the sampling distribution for the desired 
statistic. This estimate of the sampling distribution can then be used to determine CIs for the 
statistic of interest. Bootstrapping does not require any distributional assumptions for the 
population, nor does it require that there be an established formula for estimating the uncertainty 
in the statistic.  

Meaningful information on the variability associated with the ozone and PM2.5 DVs can be 
derived by using bootstrapping to assess the variability associated with the three DV statistics 
(i.e., the ozone DV, the annual PM2.5 DV, and the 24-hr PM2.5 DV).9 This analysis uses ambient 
PM2.5 and ozone measurement data taken from the EPA's AQS database to determine CIs for 
each monitor for 3-year DV periods (i.e., the 3 years of ambient data required to compute a DV 
for these NAAQS). The CIs give a measure of the temporal and spatial variability in the air 
quality represented by each monitor. A nationwide analysis of the variability and changes in this 
variability over time is also conducted. Finally, the results from this analysis of air quality 
variability are used to calculate levels of change in pollutant concentrations that can serve as 
“significant impact” thresholds in the context of source-specific “cause or contribute” 
determinations. 

The dataset used for this technical analysis comes from the AQS database described in Section 
2.1 and is the same dataset that would be used for determining the DV at any particular monitor. 
The ambient PM2.5 concentration data used for this analysis consist of 24-hr averaged samples, 
while the ozone data consist of 8-hr averaged concentrations (i.e., the MDA8’s). This includes 
data from all of the monitoring sites in the EPA's AQS database from the years of 2000 to 
2016.31 

The bootstrapping estimates used in this analysis were calculated independently for each 
monitoring site, and the bootstrapping resamples at each site were taken independently within 

                                                           
31 Raw daily and hourly measurements from FRM and FEM monitors are aggregated by AQS into a single daily 
value for each sampling site and NAAQS (annual and 24-hr) according to the procedures described in Appendix N 
of Part 50. The aggregation procedures in AQS include accounting for multiple monitors at sites, handling of 
exceptional events (which can be different between the two PM2.5 NAAQS), and calculating a 24-hr value from 1-hr 
measurements. These results reside in the "site_daily_values" table of AQS, which were downloaded for use in the 
current analysis. 
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each calendar year. The re-sampling within each year is completed such that the re-sampled year 
contains the same number of days as the original data. The number of measurements varies by 
monitoring site and can have important implications for the inherent variability. The variation in 
the sampling schedule is explored further in Section 3.2.2. The re-sampling and computation of 
new DVs at each site are conducted to mimic the DV calculation procedures as closely as 
possible, which differ for each NAAQS.19,21 

• For the annual PM2.5 NAAQS, the data from each year was further subset by quarter (i.e., 
Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec), such that the re-sampling did not allow for data 
from one quarter to occur in another quarter. The resulting re-sampled dataset was 
averaged by quarter; then the quarterly means were averaged to find the annual mean, 
with the DV being computed as the average of the three annual means. Design values for 
the annual PM2.5 NAAQS were rounded to the tenth μg/m3 (i.e., the one decimal), 
consistent with the computation of DVs for designation purposes.  

• For the 24-hr PM2.5 NAAQS, the data from each year was subset by quarter (i.e., Jan-
Mar, Apr-Jun, Jul-Sep, Oct-Dec), such that the re-sampling did not allow for data from 
one quarter to occur in another quarter. The number of days in each quarter was kept 
equal to the corresponding number in the original dataset. While this isolation of quarters 
is not a feature of the DV calculation procedure, it was applied as a precaution to avoid 
changing the seasonal balance in the bootstrapped samples. The resulting re-sampled 
dataset was then ranked, and the 98th percentile value was selected based on the number 
of daily measurements in each year, as described in Table 1 of Appendix N. The DVs 
were then computed as the average of the three annual 98th percentile values. Design 
values for the 24-hr PM2.5 NAAQS were rounded to the nearest μg/m3, consistent with 
the computation of design values for designation purposes. 

• For the ozone NAAQS, all available data at each site were used. The ozone monitoring 
regulations require monitoring for the “ozone season,” which varies by state. Many states 
operate a subset of ozone monitors outside of the required monitoring season and when 
those data are available it is used in determining DVs for regulatory purposes. Therefore, 
if a monitor operated beyond the required ozone season, all valid data were included in 
the DV calculation. For example, if the required monitoring season was from April-
October, but data from November were also available, then the MDA8 values from April-
November were ranked in order to find the 4th highest value. The DVs were then 
computed as the average of the three annual 4th highest MDA8 values. Design values for 
the ozone NAAQS were truncated to the nearest ppb, consistent with the computation of 
design values for designation purposes. Though the regulations for processing ozone data 
to compute a DV do not involve segregation of the data by season, a sensitivity analysis 
was conducted to determine the impact of applying the same quarterly segregation used 
for PM2.5. The results are summarized in Section A.4 of the Appendix, but the results 
indicated relatively little sensitivity to this choice for most sites and, thus, no quarterly 
segregation was applied for the final analysis. 
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For both PM2.5 and ozone, each year of data from each site was re-sampled 20,000 times. During 
initial development of the method, the distributions derived from the bootstrap analysis did not 
appear to change after 3,000-4,000 re-samples for several single calendar years. Therefore, 
20,000 re-samples were chosen to conservatively ensure that stable results were obtained for all 
cases. For each 1-year re-sample for each pollutant, the relevant annual statistic was computed 
(annual mean for PM2.5, 98th percentile for PM2.5, and 4th highest MDA8), giving 20,000 
estimates of the annual statistic for each year. In order to replicate the way in which the standard 
is calculated, the data from each year are resampled separately from the other years. In order to 
calculate the bootstrap samples in a manner consistent with the DV calculations (i.e., calculating 
averages and 98th percentile values in each year independently), then averaging the three annual 
values, each of the 20,000 estimates for year 1 were averaged with the corresponding 20,000 
estimates for year 2 and year 3, giving 20,000 estimates of the DV. From the 20,000 estimates, 
the mean, median, standard deviation, maximum, minimum, 25%, 50%, 68%, 75% and 95% CIs 
for the mean,32 were computed and retained for further analysis. For symmetric distribution such 
as the Normal Distribution obtained with the sampling distribution, the mean is equal to the 
median, where the median is the center value such that 50% of the values are below the median 
and 50% above. Thus, a bootstrapped CI for the mean is analogous to a bootstrapped CI for the 
median and the CIs can be calculated by rank-ordering the bootstrap results and selecting the 
bounds that contain the corresponding percentage of data. Since data from 2000-2014 were 
processed, all possible 3-year DVs from 2002-2014 were computed, for a total of 13 DV-years, 
including five 3-year periods that had non-overlapping years (i.e., 2000-2002, 2003-2005, 2006-
2008, 2009-2011, and 2012-2016).33 As we are defining the CIs as the bounds of the uncertainty 
and a measure of the air quality variability, we frequently refer to each CI as the uncertainty 
associated with the actual DV. 

The following gives an example of how the CIs are determined utilizing the percentile method34 
for the 24-hr PM2.5 DVs from a monitor: 

• Consider the dataset X0, which contains 150 measurements of 24-hr averaged PM2.5 
monitoring values from year 1. Datasets Y0 and Z0 contain data from the same site, but 
for years 2 and 3 respectively, and contain 250 and 350 days of data respectively.  

• From X0, we calculate the 98th percentile as the 3rd highest value in the dataset. From Y0, 
we calculate the 98th percentile as the 5th highest value in the dataset. From Z0, we 
calculate the 98th percentile as the 7th highest value in the dataset. The DV for this site is 
the average of the 98th percentiles from X0, Y0, and Z0. 

                                                           
32 Here, and elsewhere in this document, a CI for the median is the interval spanning the data that contains ½ of the 
CI of the data above the median and ½ of the CI of the data below the median of the re-sampled DV estimates. For 
example, the 50% CI consists of the 25% of the data above the median and the 25% of the data below the median.  
33 Later in this document, whenever a single year is used to identify a DV, it refers to the last year of the 3-year 
period. 
34 Efron, B.; Tibshirani, R. (1993); An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC. ISBN 
0-412-04231-2. 
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• From X0, 20,000 new sample datasets, X1, X2, …, X20,000, each with 150 measurements of 
PM2.5 are sampled with replacement from the original dataset X0. Likewise, 20,000 new 
sample datasets are sampled with replacement from Y0, and Z0.  

• For each Xi, the 98th percentile value is the 3rd highest value, for each Yi, the 98th 
percentile is the 5th highest value, and for each Zi, the 98th percentile is the 7th highest 
value. Thus, the DV for each subset, DVi, is the average of the 3rd high value from Xi, the 
5th highest value from Yi, and the 7th highest value from Zi. This calculation yields 20,000 
different DVs.  

• To determine the CIs from these 20,000 DVs, the DVs are ranked from low to high. Then 
the lower bound for the 50% CI is the 5,000th ranked DV, and the upper bound for the 
50% CI is the 15,000th ranked DV. That is, the CIs are determined simply by ranking the 
resulting distribution of DVs and the (1-q)% CI for the mean is the bounds of the center 
of the data that contains q percentage of the results (i.e., the lower bound is the (q/2)th 
percentile and the upper bound is the (1-q/2)th percentile). 

Section A.1 provides several illustrative examples of the bootstrapping analysis for both the 
annual and 24-hr PM2.5 NAAQS with actual data from six different sites. 

3.0 Results of the Air Quality Variability Approach 
 
This section provides results on characterizing the variability of air quality for ozone and PM2.5 
based on EPA’s Air Quality Variability approach. 

3.1 Ozone results  
 
The results from the bootstrap analysis for the 2014-2016 ozone DVs are shown in Figure 4, 
which shows the mean, median, minimum, and maximum bootstrap DVs for each monitor, as 
well as the upper and lower bounds of the 25%, 50%, 68%, 75%, and 95% CIs for the median 
DV calculated from the 20,000 bootstrap samples as a function of the DV determined from the 
original dataset (top panel), the relative differences between the CI DVs and the actual DVs 
(middle panel), and box-and-whisker plots of the distribution of the relative difference at each CI 
(bottom plot). The mean and median of the bootstrap DVs for the ozone NAAQS replicate the 
actual DV from the original site data fairly well, with some very small deviations (maximum 
deviation is less than 5%). Even though the ozone NAAQS is based on peak values (similar to 
the 24-hr PM2.5 NAAQS), the magnitude of the relative variability in the ozone bootstrap DVs 
ranges from 1-5%, with maximums around 25-30%. This is likely due to the nature of ozone 
formation (i.e., ozone is almost exclusively a secondarily formed pollutant, with precursors 
typically originating from multiple sources, rather than a single source). There is a component of 
reaction/formation time, both of which are likely to reduce the spatial variability and temporal 
variability of the ambient ozone. There is an increase in the absolute variability with an increase 
in the baseline DVs, but there is not an apparent trend in the relative variability. This indicates 
that the baseline air quality does not systematically affect the relative amount of variability at a 
site. This is especially important because it indicates that a central tendency value for the relative 
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variability in the DV for the ozone NAAQS is stable across levels of ozone concentrations. 
Therefore, a representative value can be multiplied by the level of that NAAQS to obtain a value 
in concentration units (ppb for ozone) that is appropriately used to characterize variability for 
sites with air quality that “just complies” with the NAAQS. 
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Figure 4 - Bootstrap results for the ozone 2014-2016 DVs (25%, 50%, 68%, 75%, and 95% CIs, 
along with the mean and median bootstrap DVs) Top panel shows the values for the DVs at the 
various CIs, the middle panel shows the average of the relative difference between the upper and 
lower bounds of the CI and the actual DV, and the bottom panel shows the distribution of the 
relative differences between the CI and the actual DV. 
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3.2 PM2.5 Results (Annual and 24-hr) 
 
The results from the bootstrap analysis for the 2014-2016 DVs are shown in Figures 5 and 6. The 
top two panels of Figure 5 show the upper and lower limits of the 25%, 50%, 68%, 75%, and 
95% CIs for the median as well as the mean, median, minimum and maximum DVs calculated 
from the 20,000 bootstrap samples as a function of the DV determined from the original dataset. 
Variability is greater for the 24-hr PM2.5 NAAQS than the annual PM2.5 NAAQS. This is not 
surprising since the mean is expected to be a more stable statistic than the 98th percentile. Since 
the PM2.5 data distributions tend to be skewed to the right (see examples in the Appendix), the 
presence of a few very high concentration values, or “outliers,” in the original dataset for a year 
would tend to increase the variability associated with any metric based on the highest 
concentrations (e.g., if the 50th percentile value were determined, it would likely have much less 
variability than the 98th percentile). The mean and median of the bootstrap DVs for the annual 
NAAQS almost perfectly replicate the actual DV from the original site data. While some 
deviations of the mean and median bootstrap DVs from the actual 24-hr NAAQS DV are 
evident, there are only a few sites where the mean and median bootstrap DVs deviate 
substantially from the actual DV. 

The relative variability (i.e., the difference between the bounds of the bootstrapped CI and the 
actual design value for a single monitoring site, divided by the actual design value for the site) is 
also shown in Figure 5, with distributions of the relative differences for each CI across 
monitoring sites shown in Figure 6. Viewing the results on a relative scale allows the display of 
finer details of the deviations between the bootstrap results and the actual DVs. The relative 
variability shows that for the annual NAAQS there are relatively small differences in the values 
corresponding to the 25%, 50%, 68%, and 75% CIs compared to the difference between these 
and the 95% CI. Similarly, for the 24-hr NAAQS, the values corresponding to the 50%, 68% and 
75% CIs are fairly close to each other, with greater differences between these and the 25% CI on 
the low end and the 95% CI on the high end. The relative variability shows an important feature: 
that from a relative sense, the air quality variability is fairly stable as the baseline air quality 
worsens. That is, there is no notable increase in the relative variability of the bootstrap DV as the 
actual DV increases. This is important because it indicates that the magnitude of the actual DV 
does not systematically affect the relative variability in the bootstrap DV at a site and because it 
indicates that a central tendency value for the relative variability in the DV. Therefore, a 
representative value can be multiplied by the level of that NAAQS to obtain a value in 
concentration units (μg/m3 for PM2.5) that is appropriately used to characterize variability for 
sites with air quality that “just complies” with that NAAQS. 
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Figure 5 - Bootstrap results for the PM2.5 2014-2016 DVs (25%, 50%, 68%, 75%, and 95% CIs, 
along with the mean and median bootstrap DVs). The top two panels show the values for the 
DVs at the various CIs, while the bottom two panels show the average of the percent difference 
between the upper and lower bounds of the CI and the actual DV. 
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Figure 6 - Bootstrap results for the PM2.5 2014-2016 DVs, showing distribution of the relative 
differences between the upper and lower bounds of the bootstrap DVs and the actual DV at the 
25%, 50%, 68%, 75%, and 95% CIs, along with the mean, median, maximum, minimum, 
standard deviations of the relative differences.  
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3.2.1 Analysis of PM2.5 Spatial Variability 
 
Section 2.1.3 discusses the design of the monitoring network and the spatial scales associated 
with each monitor. While there may be changes to the area around a monitor after the scale was 
determined when the monitor was sited, the monitor scale should be somewhat reflective of air 
quality within the area indicated. This basic need for multiple monitor scales and multiple 
monitors in an area to assess an area's air quality is due to the fact that there is an inherent spatial 
variability of air quality. For example, due to the inherent variability in the location of emission 
sources and changes in meteorological patterns, two “urban scale” monitors located a few blocks 
from each other would likely record different daily values, resulting in different DVs. The 
analysis conducted here seeks to quantify that spatial variability by identifying pairs of monitors 
that are located in proximity to one another to determine the relative difference between the two 
monitors, as indicated by the DVs. The differences between the DVs are interpreted as a measure 
of the spatial variability in the area and provide a benchmark to evaluate the variability 
determined from the Bootstrap analysis. 

The analysis was conducted using the 2012-2016 annual and 24-hr PM2.5 DVs and focused on 
pairs of monitors which collected PM2.5 samples every day (1:1 monitors) in order to reduce the 
impact of temporal variability (see Section 4.3.1 for an analysis of the temporal variability). A 
total of 70 1:1 monitors were identified that were separated by a distance of less than 50 km, 
with 13 less than 10 km apart. We did not investigate whether -- based on emission sources, 
winds, and terrain -- any of these sites could reasonably be considered representative for 
particular locations at which a new source could seek a permit in the future. 

The results from the analysis are summarized in Table 1 (monitor pairs within 10 km) and in 
Figures 7, 8 and 9 (monitor pairs within 50 km). There is a fairly strong correlation between the 
DVs in the site pairs (top panels in Figure 7), with a slope of 0.8 (r2 of 0.51) between monitor 
pairs less than 50 km apart for the annual NAAQS and a slope of 0.87 (r2 of 0.59) for the 24-hr 
NAAQS. There are no obvious trends in the differences between the monitors, either the absolute 
differences or the relative differences (defined as the absolute difference between the DVs from 
the two monitors divided by the average DV). The relative differences range from 0% to 66%, 
with a median relative difference of 9% for the annual DVs. For the 24-hr DVs, the relative 
differences range from 0% to 67%, with a median relative difference of 6%. When the subset of 
monitors within 10 km are considered, the slope between paired monitors is similar for the 
annual NAAQS, though the r2 increases to 0.82, while the slope for the 24-hr NAAQS increases 
to 0.97 and the r2 increases to 0.94. For this subset, the maximum relative differences drop to 
23% and 16% for the annual and 24-hr DVs, respectively, and the median relative differences 
drop to 5% and 4%, respectively.  

These results are interesting and seem to somewhat contrast the results from the bootstrap 
analysis, which suggest less variability in the annual NAAQS than in the 24-hr NAAQS. This 
comparison suggests that there is more spatial variability associated with the annual NAAQS, 
while the bootstrap results show that there is less variability in the annual NAAQS. Conversely, 
this comparison suggests that there is less spatial variability associated with the 24-hr NAAQS, 
while the bootstrap results show that there is more variability in the 24-hr NAAQS. Despite this 
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apparent contradiction, these results make sense in the context of secondary pollutants, 
particularly PM2.5. In general, the highest concentrations associated with pollutants that have a 
substantial portion due to secondary formation occur in widespread “events”". These events are 
an important aspect of the air quality in an area and are associated with unique meteorological 
conditions, which can either transport air from polluted upwind regions, increasing the 
background concentrations, or trap local pollutants and facilitate in-situ production. Events are 
also associated with unique emissions episodes, such as dust storms or biomass burning events 
that emit large quantities of primary and precursor pollutants. Because of the nature of PM2.5 
events, there would tend to be a stronger correlation of the higher concentrations across larger 
spatial scales. The average air quality (annual NAAQS), on the other hand, would not be as 
heavily impacted by the unique (and wide-spread events) and instead would be more heavily 
affected by local emissions and production. As such, the prevailing meteorological conditions 
and the prevalent local emission sources would have the most impact on the annual DVs. In this 
case, localized differences in emissions could cause monitors to have greater differences in the 
annual DVs than is seen at a number of site pairs.  

The result from the spatial variability analysis of PM2.5 also suggests an important link to 
temporal variability of PM2.5. The occurrence of these transport and emissions events is 
infrequent with varying intensity, such that they may not occur in every year and their frequency 
and duration would vary. Even when these events do occur, the intensity and impact on regional 
and local air quality would vary and also be difficult to predict. Since the bootstrap results show 
that 24-hr NAAQS has the most variability, this seems to imply that temporal variability is the 
most important component of the 24-hr NAAQS variability, while the spatial variability may be 
the most important component of the annual NAAQS variability, based on the results from the 
spatial analysis.  
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Table 1 - Summary of results from PM2.5 spatial variability analysis for monitor pairs within 10 
km of one another.  

State  City  Dist 
(km)  

Monitor 1 
ID 

Annual  
DV 1  

Monitor 2 
ID 

Annual  
DV 2  

Delta 
(%)35 

Minnesota Washington 1.0 271630447 8.1 μg/m3 271630448 8.8 μg/m3 8% 
Hawaii Honolulu 1.7 150031001 4.9 μg/m3 150031004 5.6 μg/m3 14% 
Pennsylvania Philadelphia 2.6 421010047 10.3 μg/m3 421010057 10.9 μg/m3 5% 
Pennsylvania Philadelphia 3.1 421010055 11.6 μg/m3 421010047 10.3 μg/m3 12% 
Louisiana East Baton 

Rouge 
5.4 220330009 9.0 μg/m3 221210001 9.2 μg/m3 3% 

Nevada Washoe 5.5 320310016 7.9 μg/m3 320311005 10.0 μg/m3 23% 
Pennsylvania Northampton 5.7 420950025 10.5 μg/m3 420950027 10.1 μg/m3 4% 
Rhode Island Providence 5.9 440070022 7.1 μg/m3 440071010 7.4 μg/m3 3% 
Iowa Clinton 6.4 190450019 10.6 μg/m3 190450021 9.4 μg/m3 11% 
Utah Salt Lake 7.3 490353006 9.2 μg/m3 490353010 9.7 μg/m3 5% 
New Mexico Bernalillo 7.9 350010023 6.5 μg/m3 350010024 6.3 μg/m3 3% 
Indiana Marion 8.9 180970078 11.1 μg/m3 180970081 11.8 μg/m3 6% 
Indiana Clark 9.3 180190006 11.8 μg/m3 211110067 11.3 μg/m3 4% 
State  City  Dist 

(km)  
Monitor 1 
ID 

24-hr  
DV 1  

Monitor 2 
ID 

24-hr  
DV 2  

Delta 
(%)35 

Minnesota Washington 1.0 271630447 20.6 μg/m3 271630448 21.1 μg/m3 3% 
Hawaii Honolulu 1.7 150031001 10.9 μg/m3 150031004 11.4 μg/m3 5% 
Pennsylvania Philadelphia 2.6 421010047 24.3 μg/m3 421010057 25.2 μg/m3 4% 
Pennsylvania Philadelphia 3.1 421010055 26.4 μg/m3 421010047 24.3 μg/m3 8% 
Louisiana East Baton 

Rouge 
5.4 220330009 19.7 μg/m3 221210001 19.4 μg/m3 2% 

Nevada Washoe 5.5 320310016 26.8 μg/m3 320311005 31.5 μg/m3 16% 
Pennsylvania Northampton 5.7 420950025 27.2 μg/m3 420950027 28.3 μg/m3 4% 
Rhode Island Providence 5.9 440070022 18.3 μg/m3 440071010 18.6 μg/m3 2% 
Iowa Clinton 6.4 190450019 24.7 μg/m3 190450021 22.8 μg/m3 8% 
Utah Salt Lake 7.3 490353006 42.3 μg/m3 490353010 41.0 μg/m3 3% 
New Mexico Bernalillo 7.9 350010023 15.4 μg/m3 350010024 15.1 μg/m3 2% 
Indiana Marion 8.9 180970078 25.0 μg/m3 180970081 26.4 μg/m3 5% 
Indiana Clark 9.3 180190006 24.2 μg/m3 211110067 22.8 μg/m3 6% 

 

 

  

                                                           
35 Defined as the difference between the two monitored DVs divided by the mean DV of the two monitors.  
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Figure 7 - Results from the analysis of spatial variability. Left column shows results for annual 
PM2.5 NAAQS and the right column shows the results for the 24-hr PM2.5 NAAQS.  
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Figure 8 - Spatial distribution of the difference between the DVs from spatial analysis of the 
2012-2016 PM2.5 annual DVs. Top panel shows the absolute value of the difference between the 
two monitors while the bottom panel shows the percent difference between monitors.  
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Figure 9 - Spatial distribution of the difference between the DVs from spatial analysis of the 
2012-2016 PM2.5 24-hr DVs. Top panel shows the absolute value of the difference between the 
two monitors while the bottom panel shows the percent difference between the two monitors. 
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3.2.2 Analysis of the Influence of PM2.5 Monitor Sampling Frequency 
 
The PM monitoring network was been designed to operate continuously. When initially designed 
and deployed, the monitoring requirements for PM indicated that many sites only needed to 
sample on every third or sixth day, with a smaller number required to sample every day. This 
was partly due to the technology available at the time, which required a person to collect the 
filter sample and reload the filter cartridge for each sample taken. The filters were then 
transported to a laboratory for weighting analysis. While much of the PM2.5 network still relies 
on filter-based sampling, systems that can load multiple filters and automatically swap out filters 
after each 24-hr monitoring period have reduced the labor requirements. Non-filter based 
measurement techniques have also been developed that allow for continuous operation (as well 
as 1-hr sampling) so that concentration values are provided for every 24-hr period. Additionally, 
the requirements for sampling frequency have tightened, requiring more frequent sampling, 
particularly in areas with DVs close to the NAAQS. The result of the technological and 
regulatory changes is a sampling network with varied sampling frequency, with notable changes 
in the sampling frequency over time (see Figure 10). The total number of sites in the network has 
decreased, but the number of 1:1 sites has increased. Many 1:6 and 1:3 sites have been replaced 
by 1:1 sites, a trend most obviously starting around 2008. (The site classification was based 
solely on the number of daily samples during the course of the year, i.e., sites with 60 or less 
samples were 1:6, sites with 121 samples or less but more than 60 were classified as 1:3, and 
sites with 122 or more samples were classified as 1:1.) 

Due to the nature of temporal variability, it would generally be expected that data from datasets 
from sites with less frequent sampling would in general have a higher sample variance and 
therefore wider confidence intervals. Sensitivity tests conducted with the 2010-2013 DVs indeed 
showed that statistics from the subset of sites with daily monitoring (1:1) have tighter confidence 
intervals than the subset of sites with 1:3 monitoring and all data (which includes 1:6 monitors) 
(see Table 2). However, since the 1:1 monitors are not sampling the same air as the 1:3 monitors, 
it is difficult to directly compare the results from these subsets as a definitive indicator of the 
inherent increase in variability due to less frequent sampling. However, the results do support 
what is generally expected from reduced sampling frequency (i.e., while 1:1 monitoring might 
capture a wider range of air quality, less frequent sampling would likely result in increased 
sample variance and wider confidence intervals for statistics from the air quality measurement 
data). 

Since the monitor sampling frequency can have a notable impact on the calculated air quality 
variability, an important question arises regarding which monitors should be used to characterize 
air quality variability. Using only the 1:1 monitors would likely produce smaller estimates of the 
sample variance due to the increased sample size while possibly capturing a wider range of air 
quality across a more widely sampled spectrum. However, the 1:3 and 1:6 monitors are part of 
the monitoring network and will continue to be present for the foreseeable future. Additionally, 
despite an increase in the number of 1:1 monitors, the overall air quality variability indicated by 
the network has been fairly stable for the annual and 24-hr PM2.5 NAAQS (see Section 4.3.1). 
This suggests that the inherent variability in the air quality is more influential than the increased 
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variability induced by the presence of 1:3 and 1:6 monitors. In addition, the much greater 
number of monitoring sites available when sites with all schedules are considered (see Table 2) 
provides more confidence that the results are representative of the U.S. as a whole.  

Table 2 - Summary of comparison of the air quality variability determined by the bootstrap 
analysis for PM for three design periods for monitors with different sampling frequencies.  
Monitor class all 1 in 1 1 in 3 all 1 in 1 1 in 3 all 1 in 1 1 in 3 

Year/NAAQS 2014 annual 2015 annual 2016 annual 
Difference, 
median 
bootstrap vs 
actual 

0.04% 0.02% 0.04% 0.03% 0.03% 0.06% 0.04% 0.03% 0.03% 

Avg. 25% CI span 0.67% 0.57% 0.94% 0.70% 0.58% 0.91% 0.71% 0.62% 0.88% 

Avg. 50% CI span 1.63% 1.14% 1.81% 1.65% 1.24% 1.85% 1.69% 1.22% 1.85% 

Avg. 68% CI span 2.44% 1.72% 2.67% 2.46% 1.77% 2.74% 2.45% 1.79% 2.76% 

Avg. 75% CI span 2.80% 1.92% 3.11% 2.83% 2.00% 3.09% 2.82% 2.08% 3.18% 

Avg. 95% CI span 4.72% 3.33% 5.26% 4.86% 3.43% 5.38% 4.79% 3.47% 5.48% 

Year/NAAQS 2014 24-hr 2015 24-hr 2016 24-hr 
Difference, 
median 
bootstrap vs 
actual 

1.14% 0.67% 1.54% 1.36% 0.84% 1.78% 1.23% 1.01% 1.40% 

Avg. 25% CI span  2.27% 1.89% 2.38% 2.27% 1.92% 2.50% 2.50% 2.17% 2.63% 

Avg. 50% CI span 4.29% 2.94% 4.76% 4.17% 3.45% 4.65% 4.35% 3.13% 5.13% 

Avg. 68% CI span 6.00% 4.76% 7.02% 6.25% 5.09% 7.14% 6.52% 5.00% 7.89% 

Avg. 75% CI span 6.82% 5.36% 8.33% 7.50% 5.56% 8.33% 7.69% 5.77% 8.88% 

Avg. 95% CI span 12.50% 9.40% 14.14% 12.50% 10.00% 14.81% 13.16% 9.62% 16.67% 

Number of sites 507 182 274 531 210 270 535 237 240 

 

  



37 
 

 

Figure 10 - PM2.5 monitor network statistics. Top row shows the number of sites with each 
sampling frequency by year. Second row shows the average number of samples at each site type. 
Third, fourth and fifth rows show the distribution of the number of samples for each site type.  
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4.0 Application of Air Quality Variability to Calculate SILs for the PSD 
Program 
 
For a specific change in air quality concentrations to be used to show that a proposed source does 
not cause or contribute to a violation of the NAAQS, the concentration change must represent a 
level of impact on ambient air quality that is “insignificant” or not meaningful. The EPA has 
taken into account the necessary policy considerations in conjunction with the statistical analysis 
presented here to provide a rational basis to select values derived from the statistical analysis that 
can be applied to represent “insignificant impacts.”     

Section 3 presented the results from the bootstrap analysis, which produced variability estimates 
at the 25%, 50%, 68%, 75%, and the 95% CIs for all the AQS data across the U.S. from 2000-
2016. This section presents the technical considerations related to the policy2 considerations 
guiding the application of the above results to identify an appropriate SIL for each context, and 
the final values the EPA has selected from the study results.36   

4.1 PSD Air Quality Analyses and Statistical Significance 
 
The following four factors are important for EPA’s choice of a SIL: determining a CI to 
represent the inherent variability for purposes of the NAAQS compliance demonstration, an 
approach for scaling local variability to the level of the NAAQS, the geographic extent of each 
summary value, and the DV year or years from which to use the variability results. The EPA has 
balanced the necessary policy considerations in conjunction with technical information discussed 
here and in the Policy Document2 to develop SIL values that represents, in the Agency’s 
judgment, an appropriate measure of “insignificant impact” that can be used by PSD permitting 
authorities to determine if emissions from proposed construction will “cause or contribute” to a 
violation of the corresponding NAAQS.  

4.1.1 Confidence Interval 
 
The bootstrap analysis produced estimates for the 25%, 50%, 68%, 75%, and 95% CIs in order to 
characterize the range of the inherent variability and to provide options for selecting an 
appropriate “insignificant impact” level that will be applied to determine each SIL. The statistical 
framework that forms the basis for the bootstrap CIs can be related to more traditional 
assessments of statistical significance and statistical significance testing. In contrast to the usage 
here, the traditional application of statistical significance testing seeks to determine if a deviation 
from the base value is significant (rather than not significant, which is the usage here). In order 
to make this determination, larger CIs are typically selected (e.g., 90-99%, which results in a 

                                                           
36 The methods, analysis, and application to the PSD program was subject to a peer-review. The results of that peer-
review and the subsequent changes to the analysis and the document are detailed in a companion report, U.S. EPA, 
2018, Peer review report for the technical basis for the EPA's development of significant impact thresholds for PM2.5 
and ozone, RTP, NC, EPA 454/S-18-001, available from the U.S. EPA RTP library.  
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high level of confidence that a deviation from the base value is indeed significant). In practice, 
the smallest CI that might be considered for a similar significance determination would be the 
68% CI, which corresponds to one standard deviation of the mean for a normally distributed 
sample. Thus, any deviation larger than the bounds of the 68% CI could traditionally be 
identified as a significant deviation from the mean. In this application for the PSD program, 
however, we are seeking for each NAAQS a value below which we can conclude that the change 
in air quality is “not statistically significant” (i.e., that there will not be a notable difference in air 
quality after the new source begins operation). Thus, a CI that could potentially be considered to 
represent a significant value would not simultaneously be appropriate for identifying a value that 
is statistically not significant. As such, CIs used for identifying a value that is not statistically 
significant value should be below 68%. For the reasons described in the Policy Document, the 
50% CI was chosen as the benchmark statistic from the bootstrap analysis to represent the 
recommended SILs in PSD permitting for ozone and PM2.5 NAAQS. 

4.1.2 Adjustment to the Level of the NAAQS 
 
Since air quality variability may have different characteristics at different baseline air quality 
levels (e.g., areas with smaller DVs may have less variability than areas with higher DVs), it is 
reasonable to characterize the variation in the air quality across a range of air quality levels. 
Sections 4.2 and 4.3 present the 50% CI value on both an absolute scale (ug/m3 and ppb) and a 
relative scale (percentage), where the relative variability is defined as the percent change from 
the base DV at each site. The figures in these sections indicate that there is less of a trend in the 
relative variability compared to the absolute variability, and no trend in the relative variability 
for the ozone DV at any of the CIs (i.e., the relative variability is not particularly higher or lower 
at higher or lower baseline DVs: see Figures 11 and 14). However, the relative variability was 
fairly consistent across the range of design values, suggesting a commonality in the relative 
variability across a wide range of geographic regions, chemical regimes, and baseline air quality 
levels. These results suggest that there is an inherent aspect to the variability, regardless of the 
baseline air quality. Thus, for reasons explained in the policy memorandum, the relative 
variability values are used for the SILs development.  

4.1.3 Selection of a Geographic Scale 
 
A fundamental question raised in using air quality variability to inform the selection of a value 
for a SIL is whether the variability-based SIL value should be based on an analysis of air quality 
variability at the particular site of the new source or modification, or whether the SIL value 
should reflect the central tendency of all monitored sites in the U.S., regardless of the new 
source’s or modification’s planned location.  

The EPA recognizes that the air quality data and the nature of the emissions and chemical 
formation of ozone and PM2.5 can impact areas differently and, thus, should be considered as part 
of this evaluation. The analysis presented in Sections 4.2 and 4.3 (Figures 11 and 14) examine 
the relative variability represented by the 50% CI to explore any spatial trends in the data. The 
analysis indicates that while there is evidence of local spatial correlation (i.e., most areas have 
fairly similar levels of relative variability and that sites with higher variability are isolated), there 
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are no large scale (i.e., region-to-region) trends in ambient air variability. While there is a fairly 
consistent range of variability across the U.S., the magnitude of the variability differs from site-
to-site within a state or region with few instances of regional patterns and no strong instances of 
east/west or north/south trends.   

The analysis shows that a small number of sites with particularly high variability have an effect 
on the average network-wide variability. A median network-wide variability is not overly 
influenced by a few outliers. Thus, for the reasons explained in the Policy Document, the median 
variability from the 50% CI from the entire U.S. ambient monitoring network is used to calculate 
SIL values.  

4.1.4 Selection of the Three Most Recent Design Value Years  
 
Sections 4.2.1 and 4.3.1 present trends in the median nation-wide variability at the 50% CI from 
2000-2016 (equivalent to DV years of 2002-2016). For all three NAAQS considered here, there 
are general downward trends in the computed variability across these years. Since the SILs 
should reflect the most representative state of the atmosphere, the analysis uses for each NAAQS 
the lower variability observed in the more recent periods, rather than all the data since 2000. 
However, it may be advantageous to avoid relying on a single 3-year period that may have been 
influenced by unusual circumstances, particularly in light of the slightly different trends in the 
last several years across pollutants (i.e., most recently the 24-hr PM2.5 NAAQS median 50% CI 
has increased, while the annual PM2.5 and ozone NAAQS median 50% CIs have continued to 
decrease). Faced with a similar selection of DV periods for use in attainment demonstrations for 
nonattainment areas,37 the EPA also recommended using the average of three DV periods to be 
used along with a modeling analyses. Thus, for the reasons explained in the Policy Document, 
the three most recent DV periods (i.e., 2012-2014, 2013-2015, 2014-2016) were used for 
determining SILs for PM2.5 and ozone. 

4.2 Analysis for Ozone 
 
Figure 11 shows, for each monitoring site, the half-width of the 50% CI divided by the actual 
design value, from the 2014-2016 data for the ozone NAAQS.38 The scatter plot for the relative 
variability values shows that the data are fairly well concentrated around 1-2%, with a small 
number of sites exceeding 3% and a maximum around 4.5% (with one exception). The 
variability is fairly consistent across the range of baseline air quality levels, indicating that there 
is no particular trend with actual design value in the site level variability. The median and mean 
variability values are fairly similar 

The spatial distribution of the relative variability from the 50% CI is also shown in Figure 11, 
with 2014-2016 DV period site data colored according to their relative variability and sites with 
insufficient data during this period in gray. There appears to be no notable large-scale spatial 
                                                           
37 Draft Modeling Guidance for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional 
Haze. R. Wayland, AQAD, Dec. 3, 2014. 
38 The plots for ozone show a distinct banding in the results. This is a feature of the truncation conventions that were 
applied to the AQS data prior to the air quality variability analysis.  
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trends in highest relative variability. The lack of any large-scale spatial trend indicates that there 
is indeed a fundamental characteristic to the relative ambient air quality variability (see Section 
4.1.3). 

4.2.1 Ozone Temporal Trends 
 
The median air quality variability from the 15 DV periods for ozone is shown in Figure 12 (each 
period is 3 years). This analysis shows how the combination of changes in the network design 
(e.g., the change in the monitoring season) and the changes in emissions and meteorology over 
this period have impacted the variability in the DVs from the network. There has been a small 
decrease in the variability for ozone (0.03 percentage points per year), though most of that 
decrease occurred in the form of a large drop in the variability between the 2003-2005 and 2004-
2006 DV periods. There were increases in the variability for the 2008 and 2012 DV periods, 
indicating that there is some variability between years. The median air quality variability values 
at the 50% CI for the three most recent DV periods (i.e., 2012-2014, 2013-2015, 2014-2016) as 
shown in Table 3, when averaged result in a SIL value for the ozone 8-hour NAAQS of 1.47%. 
This corresponds to 1.0 ppb at the level of the 2015 ozone NAAQS (70 ppb). 

Table 3 - Summary of ozone bootstrap results for three design periods, 2012-2014, 2013-2015, 
and 2014-2016 

Year/NAAQS 2014 annual 2015 annual 2016 annual 
Difference, mean of median bootstrap vs 
actual DV 0.44% 0.48% 0.43% 
Avg. 25% CI span 0.74% 0.76% 0.75% 

Avg. 50% CI span 1.47% 1.47% 1.47% 

Avg. 68% CI span 2.14% 2.05% 2.11% 

Avg. 75% CI span 2.38% 2.34% 2.31% 

Avg. 95% CI span 4.31% 3.97% 3.97% 

Number of sites 1148 1131 1131 
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Figure 11 - Bootstrap results from the 50% CIs for the 2016 ozone DVs. The top panel shows the 
relative difference between the span of the CI and the actual DV across the range of actual DVs, 
the middle panel shows the absolute difference between the values across the same range, and 
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the bottom panel shows the spatial distribution of the relative difference between the values at 
each site. 
 

 

Figure 12 - Median and mean variability in the network determined from the bootstrap analysis 
for the 15 DV periods from 2002-2016 for ozone (each DV period represents 3 years of data and 
the data are plotted on the ending year, i.e., the 2016 DV period is from 2014-2016 and plotted at 
2016). 
 
4.3 Analysis for PM2.5 

 
Figure 13 shows, for each monitoring site, the half-width of the 50% CI divided by the DVs, for 
both the annual and 24-hr PM2.5 NAAQS. This figure shows that the relative variability using 
these assumptions is indeed stable across the range of baseline air quality levels, while the 
absolute variability increases as the baseline air quality levels increase.39 The values for relative 
variability are fairly well concentrated around 1-2% for the annual NAAQS, with a small number 
of sites exceeding 3% and a maximum slightly less than 5%. For the 24-hr NAAQS, the data are 

                                                           
39 The rounding conventions for PM2.5 result in striations in the data, which are clearly visible in Figure 13. While 
these striations appear to represent trends in the data, this is a function of the display and not actual trends in the 
data. Linear regression lines have been added to each panel, which clearly show an increase in the absolute 
variability with increasing DVs, while the relative variability is relatively unaffected by changes in the DVs.  
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concentrated around 4-5%, with a small number of sites exceeding 10%. The outliers occur 
across the range of baseline air quality levels, indicating that there is no particular trend with 
actual DV in the occurrence of sites with especially high variability. When assessed as a whole, 
despite their relatively infrequent occurrence, these outliers do tend to increase the average 
variability. As with ozone, the median variability is less influenced by these outliers and appears 
to be more representative of the central tendency of the distribution of relative variability values 
than the average. Unlike the ozone results, the median is smaller than the mean  

The spatial distribution of the relative variability from Figure 13 is shown in Figure 14, with sites 
having data during the 2014-2016 DV period colored according to their relative variability (sites 
with insufficient data during the 2014-2016 DV period are not shown, data from other years are 
presented in the Appendix). Based solely a visual inspection, there appears to be no notable 
large-scale spatial trends in highest relative variability in either the annual or 24-hr PM2.5 
NAAQS. The sites with larger variability tend to occur in the western half of the U.S., though the 
sites are isolated and generally not grouped into any specific geographic region. The exceptions 
to this appears in Western U.S. and along the Ohio River Valley, where there are a collection of 
sites with higher variability (generally above 7.5%) in the 24-hr NAAQS (though the annual 
NAAQS does not display this apparently higher variability). This result may be related to the 
nature of high PM events in the western half of the U.S. (e.g., the typical PM2.5 levels may be 
lower in the western states, but the events that do occur produce much higher concentrations than 
the typical background, which would result in greater skew and thus greater variability in DVs 
computed from these data, particularly in the 24-hr PM2.5 DVs). These sites also tend to have a 
lower sampling frequency (see Figure 2), which we have shown to artificially increase the 
apparent variability. There are also trends in missing data that are important to consider when 
exploring regional trends in variability. In particular, for the period 2008 through 2013, the data 
were invalidated for several states. Late in 2014, a problem was found with the PM2.5 data from 
these states and, as a result, the data were invalidated for a number of years.40  

In response to comments received during the peer-review of the initial public draft of this 
document, several more detailed spatial analyses are presented for the annual and 24-hr PM2.5 
data in Section 7 of the Appendix to this document. The analysis attempts to identify natural 
groupings of sites based on location and the level of air quality variability using cluster analysis. 
The analysis applied both an iterative (K-means) and a hierarchical clustering algorithm using 
various combination of the site-level variability, latitude, and longitude, resulting in 12 different 
sets of clusters. The analysis also considered comparing sites by grouping them using the 
National Oceanic and Atmospheric Administration (NOAA) “climate regions,” which are 
groupings of states known by NOAA to have similar climatic conditions. While some of the 
analysis did identify some unique clusters, these groups were often not spatially grouped. Many 
                                                           
40 The dates and specific monitors affected in each state vary. For DC, data were invalidated in Q4 of 2016. For FL, 
data were invalidated from 2011-2014.  For GA, data were invalidated in Q1 of 2011.  For ME, data were 
invalidated from 1998-2015.  For ID, data were invalided from 2011-2014. For IL, data were invalidated from 2011-
2013 and Q1-Q2 of 2014. For Louisville, KY, data were invalidated from 2009-2013. For the South Coast Air 
Basin, CA, data were invalidated in 2014. For MS, data were invalidated in 2014.  For TN, data were invalidated 
from 2011-2014. For WA, data were invalidated from 2011-2015. The invalidation may not have affected every 
monitor in each state, but these dates cover the time spans for which the data invalidation occurred. 
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of the analyses did not identify any unique clusters. When the results from the special cluster 
analysis are considered as a whole, they do not indicate any consistent large-scale trends. The 
lack of any consistent regional trend indicates that there is indeed a fundamental characteristic to 
the relative ambient air quality variability (see Section 4.1.2). 
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Figure 13 - Bootstrap results from the 50% CIs for the 2016 PM2.5 DVs. The top two panels 
show the relative difference between the span of the CI and the actual DV across the range of 
actual DV, and the bottom two panels show the absolute difference between the values across the 
same range.  
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Figure 14 - Spatial distribution of the relative difference between the span of the 50% CI and the 
actual DV for the 2014-2016 PM2.5 DVs.  
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4.3.1 PM2.5 Temporal Trends  
 
The median air quality variability from the 13 DV periods for both the annual and 24-hr PM2.5 
NAAQS are shown in Figure 15. This analysis shows how the combination of the changes in the 
network design (e.g., the change in the monitoring frequency) and the changes in emissions and 
meteorology have impacted the network variability. There has been a greater decrease in the 
variability in the 24-hr PM2.5 NAAQS than in the variability for the annual PM2.5 NAAQS (0.03 
percentage points per year versus 0.02 percentage points per year). The analysis in Section 3.2.2 
showed that the 24-hr NAAQS is more affected by the monitoring frequency than the annual 
NAAQS, so it is likely that the change in monitoring frequency played some role in the larger 
decrease in the variability for the 24-hr PM2.5 NAAQS. The median air quality variability at the 
50% CI for the three most recent DV periods (i.e., 2012-2014, 2013-2015, 2014-2016) is shown 
in Table 4, and when averaged result in a SIL value of 1.66% for the annual PM2.5 NAAQS (12 
μg/m3) and 4.27% for the PM2.5 24-hr NAAQS (35 μg/m3). These values correspond to 0.2 μg/m3 
at the level of 12 μg/m3 for the annual NAAQS, and 1.5 μg/m3 at the level of 35 μg/m3 for the 
NAAQS. 
 
Table 4 - Summary of comparison of the air quality variability determined by the bootstrap 
analysis for three design periods.  

Year/NAAQS 2014 annual 2015 annual 2016 annual 
Difference, median bootstrap vs actual 0.04% 0.03% 0.04% 
Avg. 25% CI span 0.67% 0.70% 0.71% 

Avg. 50% CI span 1.63% 1.65% 1.69% 

Avg. 68% CI span 2.44% 2.46% 2.45% 

Avg. 75% CI span 2.80% 2.83% 2.82% 

Avg. 95% CI span 4.72% 4.86% 4.79% 

Year/NAAQS 2014 24-hr 2015 24-hr 2016 24-hr 

Difference, median bootstrap vs actual 1.14% 1.36% 1.23% 

Avg. 25% CI span 2.27% 2.27% 2.50% 

Avg. 50% CI span 4.29% 4.17% 4.35% 

Avg. 68% CI span 6.00% 6.25% 6.52% 

Avg. 75% CI span 6.82% 7.50% 7.69% 

Avg. 95% CI span 12.50% 12.50% 13.16% 

Number of sites 507 531 535 
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Figure 15 - Median and mean variability in the network determined from the bootstrap analysis 
(50% CI) for the 15 DV periods from 2002-2016 for PM2.5 (each DV period represents 3 years of 
data and the data is plotted on the ending year: i.e., the 2016 DV period is from 2014-2016 and 
plotted at 2016). 
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5. Additional Information 
Data for the analyses presented in this document can be obtained by contacting: 

Chris Owen, PhD 
Office of Air Quality Planning and Standards, U. S. EPA 
109 T.W. Alexander Dr. 
RTP, NC 27711 
919-541-5312 
owen.chris@epa.gov 
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